PULSED NONLINEAR SURFACE ACOUSTIC WAVES IN CRYSTALS

Department of Mechanical Engineering
The University of Texas at Austin

P. Hess
Institute of Physical Chemistry
University of Heidelberg

A. M. Lomonosov and V. G. Mikhalevich
General Physics Institute
Russian Academy of Sciences, Moscow

Paper 3aPAb6
16th International Congress on Acoustics
135th Meeting of the Acoustical Society of America
Seattle, Washington, USA
20-26 June 1998

• Anisotropy in Crystalline Silicon

• Theory

• Experiment

• Diffraction Effects

• Simulations with Sinusoids

• Comparison of Experiment and Theory

• Conclusion & Future Work
ANISOTROPY IN CRYSTALLINE SILICON

Stress-strain relation for cubic crystal:

\[\sigma_{ij} = c_{ijkl}e_{kl} + d_{ijklmn}e_{kl}e_{mn} \]

- \(c_{ijkl} \rightarrow 3 \) Second Order Elastic (SOE) constants
- \(d_{ijklmn} \rightarrow 6 \) Third Order Elastic (TOE) constants

Data for Si elastic constants:

Diamond Cubic Structure: Crystal Cut in Experiment:
Schematic Diagram of a Surface Acoustic Wave in an Anisotropic Medium
THEORY

Approach: Hamiltonian mechanics formalism
(Hamilton, Il’inskii, Zabolotskaya, 1996)

Velocity waveforms in solid:
\[v_j(x, z, t) = \sum_{n=-\infty}^{\infty} v_n(x) u_{nj}(z) e^{in(kx-\omega t)} \]

Coupled spectral evolution equations:
\[\frac{dv_n}{dx} + \alpha_n v_n = -n^2 \sum_{l+m=n} \frac{l m}{|lm|} R_{lm} v_l v_m \]

Solve equations numerically:
- Input data
 - Material constants (density, SOE, TOE)
 - Waveform spectrum \((x = 5 \text{ mm})\)
- Apply 4th order Runge-Kutta routine with:
 - Number of harmonics: 400
 - Pulse repetition frequency: 10 MHz
 - Maximum bandwidth: 4000 MHz

 Weak absorption was added for numerical stability.
EXPERIMENT

Approach: Laser-excited thermoelastic SAW generation
(Lomonosov and Hess, 1996)

Pulse detection:
Probe beam deflection proportional to vertical vel.
Photodiode bandwidth: 500 MHz

Beam locations:
Laser excitation: $x = 0$ mm
1st probe beam: $x = 5$ mm
2nd probe beam: $x = 21$ mm

Resulting SAW pulses:
Duration: 20 to 40 ns
Peak strain: 0.005 to 0.010 (near fracture)
Measured frequency spectrum at $x = 5$ mm:

![Graph showing measured frequency spectrum with characteristic frequency at 50 MHz.]

Characteristic frequency: 50 MHz

- **Analysis:**
 - Characteristic beam radius: $a = 3$ mm
 - Diffraction length for SAW beam: $\frac{1}{2}ka^2 = 300$ mm
 - Furthest measurement distance: $x = 21$ mm

- **Conclusion:**
 - Diffraction effects are not important.
SIMULATIONS WITH SINUSOIDS

Calculated vertical velocity waveforms ($f_0 = 50$ MHz):

\begin{figure}
\centering
\includegraphics[width=\textwidth]{vertical_velocity_waveform}
\end{figure}

Calculated longitudinal velocity waveforms:

\begin{figure}
\centering
\includegraphics[width=\textwidth]{longitudinal_velocity_waveform}
\end{figure}
EVOLUTION OF WAVEFORMS

Velocity waveforms at $x = 5$ mm:

Velocity waveforms at $x = 21$ mm:
EFFECT OF RECONSTRUCTION BANDWIDTH

Consider the longitudinal velocity waveforms at $x = 21$ mm. Theoretical waveforms with shaded bandwidth of 700 MHz:

![Theoretical waveforms with bandwidth of 700 MHz](image)

Theoretical waveforms with bandwidth of 3000 MHz:

![Theoretical waveforms with bandwidth of 3000 MHz](image)
CONCLUSION & FUTURE WORK

Results:

• First reported comparison of experiment and theory for nonlinear SAW in a crystal
• Theory in close quantitative agreement with experiment
• Predictions based on fundamental material properties

Future work:

• Study relationship between nonlinearity matrix elements and waveform distortion [Norfolk ASA meeting]
• Study variation of waveform evolution as function of direction and cut
• Investigate other anisotropic materials
• Investigate piezoelectric effects
The nonlinearity matrix is given by

\[
R_{n_1n_2} = - \sum_{s_1,s_2,s_3=1}^3 \frac{d'_{iklmpq} \beta_i^{(s_1)} \beta_l^{(s_2)} \beta_p^{(s_3)} l_k^{(s_1)} l_m^{(s_2)} l_q^{(s_3)*}}{2[n_1 l_3^{(s_1)} + n_2 l_3^{(s_2)} + (n_1 + n_2) l_3^{(s_3)*}]}
\]

where \(\beta_i^{(s)} = C_s \alpha_i^{(s)} \) and

\[
d'_{iklmpq} = d_{iklmpq} + c_{ikmq} \delta_{lp} + c_{lmkq} \delta_{ip} + c_{pqkm} \delta_{il} .
\]

To compute this expression, the linear problem must first be solved.

Start with linearized wave equation

\[
\frac{\partial^2 u_i}{\partial t^2} = \frac{\partial \sigma_{ij}}{\partial x_j} = c_{ijkl} \frac{\partial^2 u_k}{\partial x_j \partial x_l} .
\]

Next assume SAW solution of form

\[
u_i = \sum_{s=1}^3 C_s \alpha_i^{(s)} e^{ik(l_s \cdot \mathbf{r} - \omega t)}
\]

where \(l_s = \{1, 0, \zeta\} \). Substitute Eq. (2) into Eq. (1) to yield

\[
\rho \frac{c^2 \alpha_i}{\partial t^2} = \tilde{\alpha}_i^{(s)} (c) l_i^{(s)}
\]

Solve Eq. (3) subject to the stress-free surface bound. cond.

\[
\sigma_{i3} \bigg|_{x_3=0} = 0 .
\]

Substituting Eq. (2) into Eq. (4) yields

\[
\frac{i k \tilde{\alpha}_i^{(s)} (c) l_i^{(s)}}{3} \sum_{s=1}^3 C_s \alpha_k^{(s)} (c) l_i^{(s)} = 0 .
\]

These equations can be solved numerically for \(l_i^{(s)}, \alpha_i^{(s)}, \) and \(C_s \).
EVOLUTION OF SPECTRA

Measured spectrum at $x = 5$ mm:

Spectra at $x = 21$ mm:
NONLINEARITY PARAMETERS

Plane wave shock formation distance for sinusoid:

\[\bar{x} = \frac{1}{|\beta_x| \epsilon_x k} \]

where \(\epsilon_x = \frac{v_{x0}}{c} \) and \(v_x = v_{x0} \sin \omega t \) at \(x = 0 \).

- Calculated shock formation distance:
 \((v_{x0}=25 \text{ m/s}, \omega/2\pi=50 \text{ MHz}) \)
 \[\bar{x} = 2.9 \text{ mm} \]

 Meaning:
 Because propagation distance \(\Delta x = 16 \text{ mm} \),
 the pulse is well into the shock formation region.

- Calculated coefficient of nonlinearity:
 \[\beta_x = -1.0 \]

 Meaning:
 The negative sign indicates that peaks recede and
troughs advance in time, opposite to the distortion
of a sound wave.
WAVEFORMS AT FIRST LOCATION

Measured vertical velocity waveform at $x = 5$ mm:

Calculated longitudinal velocity waveform from linear theory:
EFFECT OF RECONSTRUCTION BANDWIDTH

Consider the vertical velocity waveforms at \(x = 21 \) mm.

Theoretical waveforms with shaded bandwidth of 700 MHz:

\[
\text{Shading prefactor} = \exp\left(-\frac{f}{700}\right)^{16}
\]

Theoretical waveforms with bandwidth of 3000 MHz: